The Greedy Method

The Greedy Method

Introduction:The Greedy Method Technique

- The greedy method is a general algorithm design paradigm, built on the following elements:
- configurations: different choices, collections, or values to find
- objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

The Fractional Knapsack Problem

- Given: A set S of n items, with each item i having
- b_{i} - a positive benefit
- w_{i} - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
- In this case, we let x_{i} denote the amount we take of item i
- Objective: maximize $\sum_{i \in S} b_{i}\left(x_{i} / w_{i}\right)$
- Constraint: $\quad \sum_{i \in S} x_{i} \leq W$

Example

- Given: A set S of n items, with each item i having
- b_{i} - a positive benefit
- w_{i} - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

Items:

Weight: 4 ml \$12 \$32 \$40

3
(\$ per ml)

Benefit:	$\$ 12$	$\$ 32$	$\$ 40$	$\$ 30$	$\$ 50$
Value:	3	4	20	5	50

The Fractional Knapsack

Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
- Use a heap-based priority queue to store the items, then the time complexity is $\mathrm{O}(\mathrm{n} \log$ n).
- Correctness: Suppose there is a better solution
- there is an item i with higher value than a chosen item j (i.e., $v_{j}<v_{j}$), if we replace some j with i, we get a better solution
- Thus, there is no better solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit b_{i} and weight w_{i}; max. weight W
Output: amount x_{i} of each item i
to maximize benefit with weight at most W
for each item i in S

$$
\begin{array}{ll}
x_{i} & \leftarrow 0 \\
v_{i} & \left.\leftarrow b_{i} / w_{i} \quad \text { \{value }\right\}
\end{array}
$$

$w \leftarrow 0 \quad$ \{current total weight \}
while $w<W$
remove item i with highest v_{i}
$x_{i} \leftarrow \min \left\{w_{i}, W-w\right\}$
$w \leftarrow w+\min \left\{w_{i}, W-w\right\}$

Huffman codes

- In telecommunication, how do we represent a set of messages, each with an access frequency, by a sequence of 0 's and 1's?
- To minimize the transmission and decoding costs, we may use short strings to represent more frequently used messages.
- This problem can by solved by using an extended binary tree which is used in the 2way merging problem.

An example of Huffman algorithm

- Symbols: A, B, C, D, E, F, G freq. $: 2,3,5,8,13,15,18$
- Huffman codes:

A: 10100 B: 10101 C: 1011
D: 100 E: $00 \quad$ F: 01
G: 11

Application of Greedy method

* Network routing
- Huffman Tree
* Optimal storage on tape

Scope of Research of Greedy Method

* To find guaranteed optimal solution in Decision learning tree

Assignment

Q.1) What is Greedy method?
Q.2) Explain general method of Greedy method.
Q. 2)Explain fractional Knapsack problem with example.

